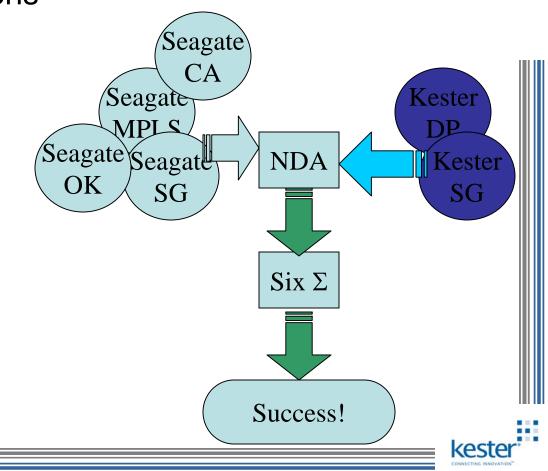


Development Aspects for Single Pass High Reliability Flip Chip Reflow Encapsulants

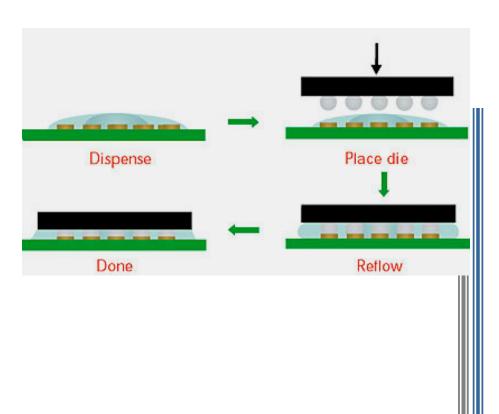
IMAPS Flip Chip Technology Workshop June 25, 2002

- Application
 - Flip Chip on Flex for disk drive (internal)
- Goals
 - Increase productivity
 - Decrease cost
 - Maintain excellent reliability
 - Enable increased product density
- Strategy
 - RE (no-flow underfill) was seen as most desirable process path
 - Strong teamwork embedded in a structured approach was the key to eventual success



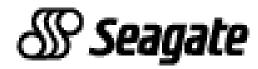
- Between organizations
- Between functions

Between locations


kester

Project Goals

Metric	Target/Rationale
Throughput	>30% increase in line throughput Product cost reduction Fewer steps; higher yield
Product Quality	Equal or better reliability with increased product density
Product Density	Reduce space required for capillary underfill
Floor Space & Equipment	Eliminate post-cure Simplify dispensing process


Reflow Encapsulant Process

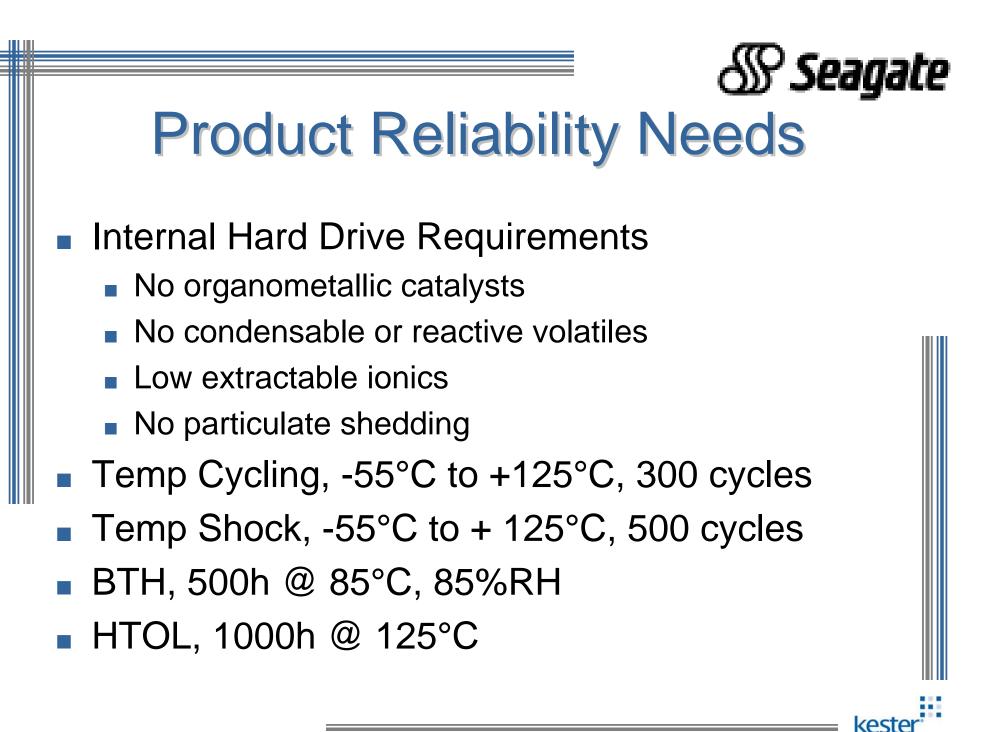
- Dispense performance is critical to process success
 - Material behavior during & after dispense is important
- Placement tailored to optimize compression flow
- Reflow must take place prior to gel, but material must gel prior to cooling
- Cure must exceed 95% after single reflow pass

യ്യ് Seagate

kest

Kest

Project Timeline


- driven aspect
- Multiple paths on development; some failures

Material Requirements

Requirement	Target/Rationale
Dispensing/viscosity	Repeatably dispensable; preliminary target >10000 cps, ultimately 13000- 20000 cps CV < 3% @ 2mg shot size
Pot Life	>8 hours @ 25°C
Storage Life	>6 months @ -40°C
Predictable, Single-pass Reflow and Curing	>95% cure after single reflow pass. Repeatable and robust to processing conditions. Excellent solderability to OSP

ගි Seagate

Success Through Teamwork

- Initially, material development was not efficient due to:
 - Poor communication
 - Undefined and conflicting expectations
 - Tentative trust

ී Seagate

Success Through Teamwork

Redefined Cooperative effort:

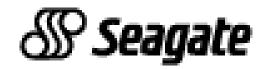
- Corporate technical agreement put in place
 - Defined intellectual property issues (Kester, Seagate)
 - Allowed close working relationship to be established
- Focused two-day meeting
 - Redefined relationships, goals
 - Defined avenues to deal with communication gaps
 - Cross functional, cross-organizational, geographic
 - Reviewed previous activity/knowledge gained
 - Placed in context of new relationship

ී Seagate

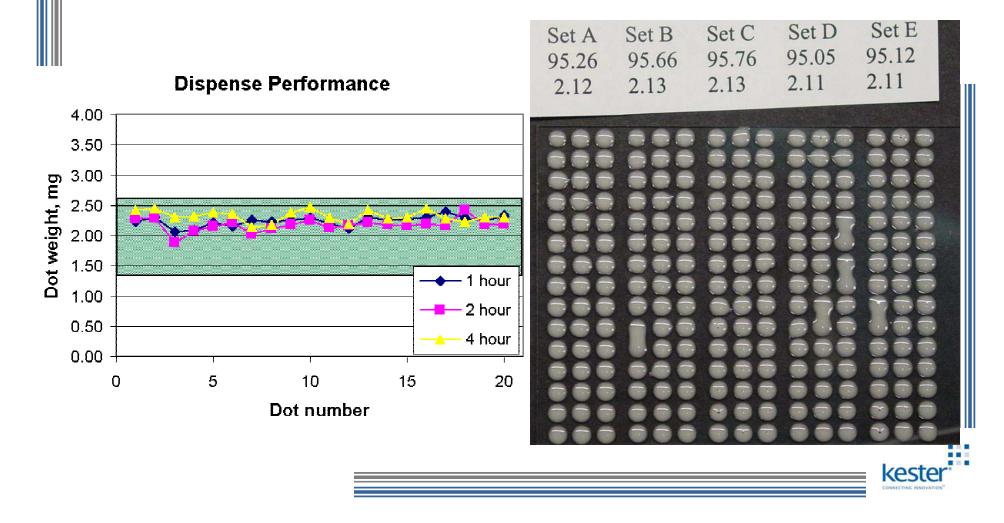
Success Through Teamwork

Six Sigma processes a key to success

- Improve Time to market for products (increasing DGR)
- Lead the industry in key objectives (Introducing new and leading technology)
- Create World class manufacturing Processes
- Develop Strategic Supplier Relationships

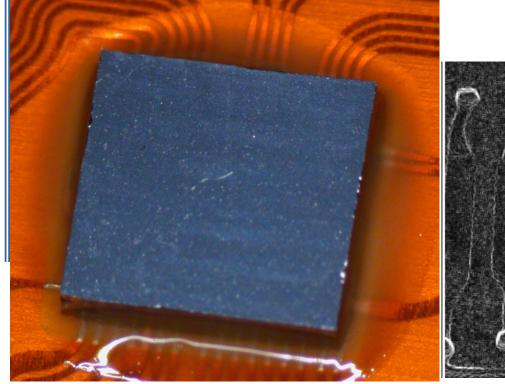


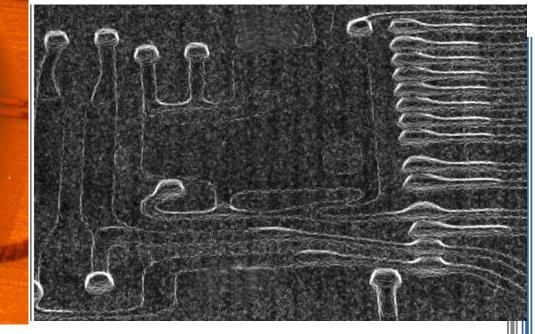
	ess Through T Sigma Steps: RE Dev	
Six Sigma Step	Development	Implementation
Measure	Initial Formulations	Introduce technology to product
Analyze	Learning through process & test	Qualified at product level
Improve	Reformulation, improved test structures	Set process keys & WS
Control	Qualify final formulation Manufacturing scale-up	In high volume production


Success Through Teamwork

യ്യ് Seagate

- Many material formulation attributes not well understood
 - Initially, needed to deal with basic things
 - Dispensability was initially very poor
 - Once process issues were solved, passing thermal shock was next hurdle
 - Final hurdle was thermal cycle performance
 - More difficult than thermal shock




Current Status: Dispensability & Pot Life

Seagate Seagate

Current Status: Reflow/Curing

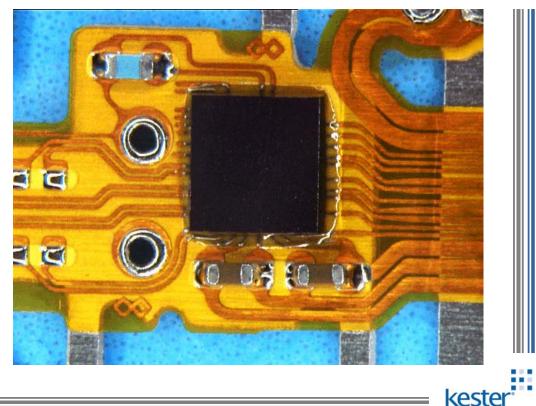
ී Seagate

keste

Material Requirements

Material Properties

- Dispense/viscosity
 - CV of 3% at 2mg achieved
- Pot life
 - Greater than 8 hours
- Storage Life
 - 6 months, -40° C
- Cure
 - >95% cure after reflow
 - Excellent solderability, including to OSP


Reliability Goals

- Passes all Seagate tests for:
 - Organometallic catalysts
 - Condensable volatiles
 - Extractable ionics
 - Particulate shedding
- Passes Temp Cycling, -55°C to +125°C, 300 cycles
- Passes Temp Shock, -55°C to + 125°C, 500 cycles
- Passes BTH, 500h @ 85°C, 85%RH
- HTOL >1000h @ 125°C

Future Path

- Complete High Volume Ramp
- Advance Dispense Process
 - 1.0 mg shot size
- General Market Availability

Conclusions

- A unique RE for flip chip on flex has been qualified and is released for production; all key performance goals were met
 - Material will be available to the general market
- A strong OEM-supplier partnership provided path to success
 - Structured, Six-Sigma approach was a key to managing the development process
 - Trust and common viewpoint between organizations took time and significant effort to develop